Jacqueline Batley

Professor
University of Western Australia

Perth, WA

Contact me for

  • Mentoring
  • Sitting on boards or committees
  • Providing an expert opinion
  • Conference presenting
  • Opportunities to collaborate

Biography

After gaining a BSc (Hons) in Biology from the University of Bristol, I was awarded an MSc from the University of Durham. I undertook my PhD studies at Long Ashton Research Station and was awarded my PhD from the University of Bristol, UK in 2001. After a short postdoc at the University of Bristol I moved to Australia in 2002, as a senior research scientist at DPI-Victoria. I returned to academia in 2007, leading a research group at the University of Queensland as an ARC QEII Research Fellow. In 2014 I moved to the University of Western Australia to undertake my ARC Future Fellowship and I currently lead a research group in crop genetics and genomics in the School of Biological Sciences, with a focus on disease resistance in Brassicas.

I serve on the Editorial boards of BMC Genomics, Molecular Breeding, Frontiers in Plant Science, Agronomy and Plant Molecualr Biology Reporter

Research interests

Crop Improvement

Crop production is limited by disease and drought, and the global demand often exceeds the production capabilities of current cultivars. I develop and apply breakthrough biotechnological advances for crop improvement, through identification of genomic regions controlling traits, which are being translated to commercial outcomes. I have a focus on Brassica speices, such as canola and these novel methods are leading to an increase in the yield of this important crop, and thus contributing to national exports and increasing global food security. My identification of genes linked to shatter tolerance, blackleg disease resistance and oil quality has already led to development of new canola cultivars with enhanced productivity, profit, and yield stability. Whilst much of the work is focussed on Brassicas I also apply these technologies to other crops including wheat, chickpea and soybean.

Evolution of disease resistance genes

Plant disease resistance genes play a critical role in providing resistance against pathogens. The largest families of resistance genes are the nucleotide binding site and leucine rich repeat genes (NBS-LRRs) and receptor like proteins (RLPs). Hundreds of these genes are present within the genome, however the evolutionary history of these genes is not fully understood. Genome wide identification of these genes within and between species allows a study of which genes are core to a species or family and which have variable roles. We have projectss to identify all these genes within Brassica species and wild relative species, perform comparative analysis within and between the species and provide an understanding of the evolution of these genes and their role in disease resistance. As part of this we focus on pan -genomics.

Genomics of Plant pathogen interactions

Research on the interactions between plants and pathogens has become one of the most rapidly moving fields in the plant sciences, findings of which have contributed to the development of new strategies and technologies for crop protection. A good example of plant and pathogen evolution is the gene-for-gene interaction between the fungal pathogen Leptosphaeria maculans, causal agent of Blackleg disease, and Brassica crops (canola, mustard, cabbage, cauliflower, broccoli, Brussels sprouts). The newly available genome sequences for Brassica spp., wild relatives and L. maculans provide the resources to study the co-evolution of these plants and the pathogen. I use next generation sequencing technologies to characterise the diversity and evolution of these genes in different wild and cultivated Brassica species, undertake phenotypic analysis of the disease in a variety of cultivars and species and perform association genetics to link to the phenotype and identify novel sources of resistance.

Video